首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5843篇
  免费   491篇
  国内免费   24篇
电工技术   35篇
综合类   93篇
化学工业   1376篇
金属工艺   166篇
机械仪表   50篇
建筑科学   60篇
矿业工程   30篇
能源动力   1001篇
轻工业   1400篇
水利工程   116篇
石油天然气   216篇
武器工业   2篇
无线电   380篇
一般工业技术   824篇
冶金工业   48篇
原子能技术   29篇
自动化技术   532篇
  2024年   10篇
  2023年   392篇
  2022年   266篇
  2021年   293篇
  2020年   470篇
  2019年   358篇
  2018年   237篇
  2017年   334篇
  2016年   394篇
  2015年   394篇
  2014年   535篇
  2013年   395篇
  2012年   263篇
  2011年   210篇
  2010年   238篇
  2009年   221篇
  2008年   71篇
  2007年   243篇
  2006年   199篇
  2005年   155篇
  2004年   74篇
  2003年   131篇
  2002年   123篇
  2001年   149篇
  2000年   67篇
  1999年   87篇
  1998年   48篇
  1997年   1篇
排序方式: 共有6358条查询结果,搜索用时 15 毫秒
1.
The evolution of new SARS-CoV-2 variants around the globe has made the COVID-19 pandemic more worrisome, further pressuring the health care system and immunity. Novel variations that are unique to the receptor-binding motif (RBM) of the receptor-binding domain (RBD) spike glycoprotein, i. e. L452R-E484Q, may play a different role in the B.1.617 (also known as G/452R.V3) variant's pathogenicity and better survival compared to the wild type. Therefore, a thorough analysis is needed to understand the impact of these mutations on binding with host receptor (RBD) and to guide new therapeutics development. In this study, we used structural and biomolecular simulation techniques to explore the impact of specific mutations (L452R-E484Q) in the B.1.617 variant on the binding of RBD to the host receptor ACE2. Our analysis revealed that the B.1.617 variant possesses different dynamic behaviours by altering dynamic-stability, residual flexibility and structural compactness. Moreover, the new variant had altered the bonding network and structural-dynamics properties significantly. MM/GBSA technique was used, which further established the binding differences between the wild type and B.1.617 variant. In conclusion, this study provides a strong impetus to develop novel drugs against the new SARS-CoV-2 variants.  相似文献   
2.
《Ceramics International》2022,48(22):32994-33002
Al2O3 aerogels are widely employed in heat insulation and flame retardancy because of their unique combination of low thermal conductivity and exceptional high-temperature stability. However, the mechanical properties of Al2O3 aerogel are poor, and the preparation time is considerably long. In this study, we present a simple and scalable approach to construct monolithic Pal/Al2O3 composite aerogels using solvothermal treatment instead of traditional solvent replacement, which remarkably shortened the preparation time. Subsequently, to obtain stable superhydrophobicity (θ > 152°), the Pal/Al2O3 aerogel was modified by gas-phase modification method. The obtained Pal/Al2O3 composite aerogels demonstrate the integrated properties of low density (0.078–0.106 g/cm3), low thermal conductivity (1000 °C, 0.143 W/(m·K)), good mechanical properties (Young's modulus, 1.6 MPa), and good heat resistance. The monolithic Pal/Al2O3 composite aerogels with improved mechanical performance and improved thermal stability can show great potential in the field of thermal insulation.  相似文献   
3.
The purpose of this study was to increase the water solubility and potential bioavailability of quercetin by encapsulation in whey protein isolate (WPI) based on a green, efficient pH-driven method. According to the results, the water solubility of quercetin increased by 346.9: times after loading into WPI nanoparticles. When the initial quercetin concentration was 0.25 mg mL−1 and WPI was 2% w/v, the encapsulation efficiency reached 94.1%, the Z-average diameter was 36.63 nm, and the zeta potential was −36.4 mV at pH 7.0. The fluorescence spectroscopy assay suggested the molecular complexation of quercetin and WPI at pH 12.0. X-ray diffraction assay indicated the enclosure of amorphous quercetin in WPI. Correspondingly, the bioaccessibility increased from 2.76% to 31.23% and the Caco-2 cell monolayer uptake increased from 0% to 2.12% after nanoencapsulation. This work confirmed that the pH-driven method is an effective approach to prepare WPI–quercetin nanocapsules to improve physical and potentially biological properties of quercetin.  相似文献   
4.
This work investigated incorporation of Nannochloropsis salina into renneted dairy gels and curd. Whole and ruptured microalgal cells did not impair κ-casein macropeptide cleavage by the rennet enzyme. However, insoluble components of ruptured cells impeded gelation, presumably by hindering interactions between renneted casein micelles. Confocal imaging showed that whole cells were retained and homogenously distributed within the protein network of the gels and cooked curd, whereas ruptured algae formed large aggregates that altered the protein matrix. Eicosapentaenoic acid (EPA) in the whole microalgal cells was incorporated within the curds, with considerably less EPA retained for ruptured cells. Soluble algal debris did not impair gelation, however EPA wasn't retained in the curd. The study demonstrates that nutrient enrichment of renneted dairy products is possible by incorporating whole microalgal cells to displace milk fat with protein and the beneficial long-chain omega-3 fatty acid EPA. Future research into the optimisation of product organoleptic properties is required.  相似文献   
5.
In this study, microbes were isolated from the rice slurry of a fermented rice cake to obtain lactic acid bacteria and yeast species. These species were identified using microbial physiology and gene sequence analyses. As the growth of the lactic acid bacterial strain R-2b and the yeast J-3a strains were found to be the best, a composite starter comprising these microbes was used for the preparation of fermented rice cakes. Based on single factor and orthogonal experiments, when the proportion of Lactobacillus plantarum, Saccharomyces cerevisiae, and Candida humilis was 1:3:6, the optimal fermentation conditions were addition of sugar and starter amounts of 20% and 6%, respectively, a fermentation temperature of 32 °C, and fermentation time of 8 h. The fermented rice cake with this optimum ratio had the most abundant volatile components and qualified physicochemical and microbial indexes. Additionally, the overall quality was better than that of commercially available products.  相似文献   
6.
《Ceramics International》2022,48(15):21502-21514
Based on the good osteogenic and angiogenic effects of silicon and magnesium elements, three types of micro-nano magnesium-containing silicates (MS), including akermanite (Ake, Ca2MgSi2O7), diopside (Dio, CaMgSi2O6) and forsterite (For, Mg2SiO4), were incorporated into calcium phosphate cement (CPC) to improve its osteogenic and angiogenic performances for clinical application. In this present work, the physicochemical properties, osteogenesis and angiogenesis of MS/CPCs (Ake/CPCs, Dio/CPCs and For/CPCs) were investigated systematically and comparatively. The results showed that all MS/CPCs had good biomineralization and significantly stimulated the osteogenic differentiation of mBMSCs and angiogenic differentiation of HUVECs, respectively. Besides, the stimulating effects were related to not only the category of MS, but also the content of MS. The For/CPCs had a good angiogenic property but their initial setting times were beyond 60 min. The Dio/CPCs showed the lowest biological performance among the three groups of MS/CPCs due to the lower ion release (Si and Mg). The Ake was the ideal modifier that could provide CPC with appropriate physicochemical properties, better osteogenesis and angiogenesis. Simultaneously, a higher addition (10 wt%) of akermanite resulted in the best potential to bone regeneration. Taken together, this research provides an effective approach to improve the overall performance of CPC, and 10Ake/CPC is of great promising prospect in bone repair.  相似文献   
7.
8.
Radio frequency (RF) heating has been applied to process foods due to its unique advantages like volumetric heating. To investigate the interaction between dispersed liquid food and electromagnetic field, four dispersion structures, formed by polypropylene pellets dispersed in the samples, and six solutions with different ion concentrations were analyzed. The Results showed that 4 mm dispersion structure and 0.01 mol/L ion concentration involved in the highest heating rate and made the heating rate increase from 1.23 °C/min to 5.53 °C/min. For materials with different ion concentrations, the maximum heating rate corresponded to the dispersion structure of different sizes. But the dispersion structure would reduce the heating uniformity of the horizontal surface of materials. It suggested that dispersion structure and an proper ion concentration could change the material into a dispersed status, further improve RF heating rate, and ensure the efficiency of sterilization as well as retain the nutrition of foodstuffs.  相似文献   
9.
In this study, we found that treatment with cold plasma influenced the wetting properties of soy protein isolate and milk protein concentrate powders. Cold plasma treatment significantly decreased the apparent contact angle of the powders, indicating hydrophilization of the powders. Cold radiofrequency low-pressure plasma treatment had a larger effect on powder wettability than corona atmospheric plasma discharge. In addition, cold plasma treatment had a more noticeable effect on the wettability of the hydrophobic milk protein concentrate than on the inherently hydrophilic soy protein isolate. Both the soy protein isolate and milk protein concentrate demonstrated zero hydrophobic recovery over time. Scanning electron microscopy showed that cold air plasma treatment of food powders caused minor surface oxidation, though these changes were not observed using FTIR spectroscopy. We suggest that cold plasma treatment has important implications for the production of stabilizer-free food suspensions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号